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C. Modiped RGB Ratio-Based Gradient-Enhancing A. Gradient-Enhancing Conversion

Conversion Method : - :
The color image acquisition process is modeled as

In [6], classibcation performance with a neural network wdsllows [19]:
simulated for color and gray-level images with two different

ratios. Gray-level images converted by their ratio (0.5 for red, Ri E()Si()Qr( )d
0.4 for green, and 0.1 for blue) are better than those of equal- G = E()S()Qs()d (3)
weight conversion for detecting yellow lane markings, as shown B E()Si()Qe( )d

in Fig. 4(b). This observation may be reasonable under daylight

conditions since both yellow and white lanes have higher valudgere —denotes the wavelength of ligh;, Gi, andB; are

than the road in the red and green channel. However, the préte RGB values of theth pixel of the imageE () denotes the

lem remains under different color temperature illumination§pectral power distribution of light; artg| ( ) is the object sur-

such as evening sun or artiPcial lighting conditions. face reRectance for théh pixel. The spectral sensitivities of the
RGB sensors are denoted Ri( ), Qc( ), andQg ( ), re-
spectively. In other word<s ( ) is determined by illumination

D. Brightness Compensation Method Based on conditions Sj( ) is determined by the object surface color, and

Gray-Level Clustering Q( ) is determined by the characteristics of the camera sensor.

Thus, RGB values of an image of the same color object captured

Wang et al. [11] proposed a lane detection algorithm t?? th m mer n vary with illumination chan Thi
address illumination problems caused by weather conditio g the same camera can vary umination changes. This

They performed brightness compensation in the Y chandB ans that the bxed-RGB-ratio method cannot produce the best

image of the YIQ color space, where | stands for in-phas%mI.J(;'Osn.Iron?ﬁlgﬁo;hsofgf'ognr:d'ent maximization problem in
and Q stands for quadrature. They analyzed the histogramv lous Jiumination ¢ ions. .
0 address the given problem, we dynamically generate a

the Y channel image and divided the Y channel image into . . . . o
light and dark components by an SCA and fuzzy C-mean clyg2nVesion vector that can be adapted in various illumination
9 road conditions. The conversion vector converts a color

tering. For each component, compensation is achieved ba&f ; . . .
age into a gray-level image to provide the maximum lane

on the gamma correction shown in (2). The correction terflnad ) .
ie., from (2), is calculated by the fuzzy logic membershi&rad".em' The conversion veptor is updated by the lane and road
function. Thus color information of the previous frames.

Gray-level conversion is generally performed by the
o(i) = (p(i)/ 255 x 255 @) weighted sum of RGB as follows:

wherec(i) is the compensated intensity at thté pixel, and y=WrR+weG+wsB )

p(i) is the original intensity at théth pixel. The method of , ,
Wang et al. analyzes the frame and applies an adaptive cd’?’—he_reWR’ We, andwg are weights of RG.B’ a_ngl 'S a con-
rection process to the frame. If roads and lanes are classiS&E'ON value of (R.’ G, B). The lane gradient in the converted
as different clusters, the gradient is adequately enhanced'Mf9¢ 1S mathematically represented as follows:
classibcation fails, brightness is not well compensated. Mis- .
classibcation may occur because lanes and roads have similar g = (r.y)= Iy Syl ®)
intensity values in many situations.

All approaches based on gray-level image enhancem&fiereyr andy are gray-level values of roads and lanes,

(such as contrast enhancement and brightness compensafi®gjectively- _
have limitations. If the original gray levels are similar, then Eduation (4) can be represented as the inner product between

the enhanced values are also similar. Thus, the informatiBrFOnversion vector and an RGB vector. Thus, we represent a
that is lost by the gray-level image conversion process carnversion value of théth pixel of an image by conversion
not be recovered. In addition, the modibped RGB ratio-bas¥gctorw as follows:

method does not guarantee that gradients between lanes and

roads remain appropriate under various illumination conditions. yi(w) = w X ©
Therefore, a new conversion method is needed to produce

larger gradients between lanes and roads in various illuminatiyf€réw denotes a conversion vector of RG#r , We, Ws ),
conditions to properly detect lanes. andx; denotes an RGB vectdR;, Gi, B;). The inner product
is geometrically interpreted as the scalar projection of one
vector onto another vector. Thug, from (6) is the scalar
lll. PROPOSEDMETHOD projection ofx; onto weight vectow. In other wordsy; can
. . : be achieved by dimension reduction from a 3-D vector to a 1-D
Here, we propose a gradient-enhancing conversion method ; i
: . : calar. Using (6)g from (5) can be represented as follows:
that produces a lane-gradient-maximized image from a color
image. In addition, we propose an illumination-robust lane de- W) = Iy (W) S yi(w)]
tection algorithm based on the gradient-enhancing conversion 9 =W M

method. =|w-x"Sw-x'| (7)
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wherex" andx' are RGB pixel values of the road and lane
regions, respectively. Therefore, gradient-enhancing conver-
sion involves bnding vector s« that satispes the following
equation:

9 (Wmax) = max(g (w))

=max |w-x"Sw-x'| . (8)

Since gray-level image conversion in (6) is a kind of di-
mension reduction, (8) can be solved by Pnding a dimension
reduction vector that results in different converted values for
the road and lane classes. To obtain the dimension reduction
VECtorwmax of an image from (8), we should know andx'
of the image, which are debned by training data. Training data
consist of road and lane classes. To create training data for a
current image, we need to know the RGB values of the lanes
and roads in the image. However, since this is a preprocessing
step for the lane detection algorithm, the information is not
sufpcient to extract the training data in the current frame. Thus,
training data for the current frame are extracted from several
previous frames. Details of the creation and updating processes
for training data are explained in Section Il1-B.

Training data for classfor the frame at time are debned as
follows:

Tt = X tSk th(kgl) X tS(kS2) X tS1 (9)
¢ ¢ ¢ ¢ ¢ Fig. 5. Lane-gradient-enhanced image of Fig. 1. (a) White-lane gradient.

. - . b) Yellow-lane gradient.
whereT{ is training data of class for the frame at time, c ® ’

is either the lane or the road,. denotes training data for classyellow. To maximize gradient enhancement, we identify two
c extracted from the frame at timg andk is the number of conversion vectors: one to enhance white-lane gradients and
previous frames to be used as training data for a current franiee other to enhance yellow-lane gradients. Thus, the two-
The problem in (8) becomes identibcation of the dimensi@tass LDA method is used, and two converted images are
reduction vector that maximizes discriminance between diffejenerated from one color image. Fig. 5 shows an example
ent classes and that can be solved by the LDA approach, whigthgradient-enhanced converted images. Fig. 5(a) is a white-
is a method frequently used in statistics, pattern recognitidane-gradient-enhanced image, and Fig. 5(b) is a yellow-lane-
and machine learning to Pnd a linear combination of featurgedient-enhanced image. In both images, yellow and white
that characterize or separate two or more classes of objgaises are more noticeable than in the other methods shown in
or events. LDA uses two different variances to bnd the linegigs. 2 and 4. Both white- and yellow-lane gradients are greater
combination between-class-scatBy and within-class-scatter than those of the other methods, as shown in Table I.
Sw . Each term is debned as follows:

¢ B. Lane Detection Algorithm

Ss = ni(m; Sm)(m; Sm)’ (10)
i=1 Based on the gradient-enhancing conversion method de-
c scribed in the previous section, we implement an illumination-
Sw = (xS mj)(xSm)T (11) robust lane detection algorithm. The proposed algorithm starts
i=1 x C from an image conversion based on the gradient-enhancing

vector. Edge detection is then performed as a feature extraction
' ! ! method. The Hough transform (HT) and edge linking method
mean of class, m is the mean of all data; is the number of 4.6 ysed for initial lane estimation. Final lane detection results
classes, an@; is a set of all data in class are produced by btting the lane model. Training data are
To distinguish different classes, the between-class-scatter gfjated to adapt illumination changes. In the update step, we
wx should be maximized, and the within-class-scatter shouldiract new training data for the next frame. The overall process

be minimized. Thus of the algorithm is shown in Fig. 6. Details of each step are

wherex is data,n; is the number of data in clagssm; is the

wT Sgw| represented as follows.
W = arg max—- : (12) Edge detection preserves important structural properties and
wT Sy w| .
signibcantly reduces the amount of data. Among the edge
Lane class is divided into a yellow-lane class and a whiteetection algorithms, we use the Canny edge detector with
lane class, since lanes are generally marked with white adaptive threshold values. The Canny edge detector uses two
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Fig. 16. Yellow-lane gradients in converted images consecutive sequences in Fig. 15(a)b(d).

derived from the curve parameters since the lane modelviberex is an RGB vector of a pixel in the frame &8 1, m,

differentiable and continuous. Thus is a mean vector of clags S; is a covariance matrix of class
1o ¢, andMD . is the Mahalanobis distance betweermandm,.
y= 20X7+mX+Db, X<Xo (18) If MD ¢(x) is less than a certain value,is chosen as the new
mx+ b, X Xo training data of class.
m = a }coxz +mx+b |x=x,,b=bS }coxé. (19) For the initial frame of an image sequence, we manually
dx 2 2 crop patches of lane and road regions and use them as initial

Three parameters of the quadratic curve are needed to
mate the lane model. The least squares method is used to
the parameters of a quadratic curve. Thus

d ﬁi_ning data. Training data for other frames are then updated
E)ﬁ@dapting illumination changes.

. IV. EXPERIMENTAL RESULT
SSD(cg, m, b) = yi S ECOXZ +mx+b . (20) A Database Construction

X>X O . . . . -, . -
The video database in various environmental conditions is

Training data for the next frame are updated based on lameeded to evaluate vision-based ADAS. Since the performance
detection results in the current frame. First, we select tl a vision-based algorithm varies according to illumination
interesting regions near the detected lanes. The new traingiganges, we consider illumination conditions for constructing
data of clasg, i.e.,X {31, are collected based on the statisticahe video database. lllumination changes in road environments
characteristics of the tralnmg data for the framet& 1, may include natural and artibcial light changes. Natural light
ie., T¢S1. The Mahalanobis distance is used to measure tbanges are caused by time and weather, and artibcial light
Slmllarlty betweerT{S! and the frame at time$ 1. Thus changes are caused by the characteristics of streetlamps and
- . - vehicle lamps. The road type is another important factor in
MD(x)= (xS m¢)TSZ(x S me) (21) developing ADAS. Fast vehicles, straight roads, and clear










