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C. ModiÞed RGB Ratio-Based Gradient-Enhancing
Conversion Method

In [6], classiÞcation performance with a neural network was
simulated for color and gray-level images with two different
ratios. Gray-level images converted by their ratio (0.5 for red,
0.4 for green, and 0.1 for blue) are better than those of equal-
weight conversion for detecting yellow lane markings, as shown
in Fig. 4(b). This observation may be reasonable under daylight
conditions since both yellow and white lanes have higher values
than the road in the red and green channel. However, the prob-
lem remains under different color temperature illuminations,
such as evening sun or artiÞcial lighting conditions.

D. Brightness Compensation Method Based on
Gray-Level Clustering

Wang et al. [11] proposed a lane detection algorithm to
address illumination problems caused by weather conditions.
They performed brightness compensation in the Y channel
image of the YIQ color space, where I stands for in-phase,
and Q stands for quadrature. They analyzed the histogram of
the Y channel image and divided the Y channel image into
light and dark components by an SCA and fuzzy C-mean clus-
tering. For each component, compensation is achieved based
on the gamma correction shown in (2). The correction term,
i.e., � from (2), is calculated by the fuzzy logic membership
function. Thus

c(i ) = ( p(i )/ 255)� × 255 (2)

wherec(i ) is the compensated intensity at thei th pixel, and
p(i ) is the original intensity at thei th pixel. The method of
Wang et al. analyzes the frame and applies an adaptive cor-
rection process to the frame. If roads and lanes are classiÞed
as different clusters, the gradient is adequately enhanced. If
classiÞcation fails, brightness is not well compensated. Mis-
classiÞcation may occur because lanes and roads have similar
intensity values in many situations.

All approaches based on gray-level image enhancement
(such as contrast enhancement and brightness compensation)
have limitations. If the original gray levels are similar, then
the enhanced values are also similar. Thus, the information
that is lost by the gray-level image conversion process can-
not be recovered. In addition, the modiÞed RGB ratio-based
method does not guarantee that gradients between lanes and
roads remain appropriate under various illumination conditions.
Therefore, a new conversion method is needed to produce
larger gradients between lanes and roads in various illumination
conditions to properly detect lanes.

III. PROPOSEDMETHOD

Here, we propose a gradient-enhancing conversion method
that produces a lane-gradient-maximized image from a color
image. In addition, we propose an illumination-robust lane de-
tection algorithm based on the gradient-enhancing conversion
method.

A. Gradient-Enhancing Conversion

The color image acquisition process is modeled as
follows [19]:
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where� denotes the wavelength of light;Ri , Gi , andBi are
the RGB values of thei th pixel of the image;E(� ) denotes the
spectral power distribution of light; andSi (� ) is the object sur-
face reßectance for thei th pixel. The spectral sensitivities of the
RGB sensors are denoted byQR (� ), QG (� ), andQB (� ), re-
spectively. In other words,E(� ) is determined by illumination
conditions,Si (� ) is determined by the object surface color, and
Q(� ) is determined by the characteristics of the camera sensor.
Thus, RGB values of an image of the same color object captured
by the same camera can vary with illumination changes. This
means that the Þxed-RGB-ratio method cannot produce the best
solution to solve the lane-gradient maximization problem in
various illumination conditions.

To address the given problem, we dynamically generate a
conversion vector that can be adapted in various illumination
and road conditions. The conversion vector converts a color
image into a gray-level image to provide the maximum lane
gradient. The conversion vector is updated by the lane and road
color information of the previous frames.

Gray-level conversion is generally performed by the
weighted sum of RGB as follows:

y = wR R + wG G + wB B (4)

wherewR , wG , andwB are weights of RGB, andy is a con-
version value of (R, G, B). The lane gradient in the converted
image is mathematically represented as follows:

gl = � (yr , yl ) = |yr Š yl | (5)

where yr and yl are gray-level values of roads and lanes,
respectively.

Equation (4) can be represented as the inner product between
a conversion vector and an RGB vector. Thus, we represent a
conversion value of thei th pixel of an image by conversion
vectorw as follows:

yi (w) = w · x i (6)

wherew denotes a conversion vector of RGB(wR , wG , wB ),
andx i denotes an RGB vector(Ri , Gi , Bi ). The inner product
is geometrically interpreted as the scalar projection of one
vector onto another vector. Thus,yi from (6) is the scalar
projection ofx i onto weight vectorw. In other words,yi can
be achieved by dimension reduction from a 3-D vector to a 1-D
scalar. Using (6),gl from (5) can be represented as follows:

gl (w) = |yr (w) Š yl (w)|

= |w · x r Š w · x l | (7)
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wherexr and x l are RGB pixel values of the road and lane
regions, respectively. Therefore, gradient-enhancing conver-
sion involves Þnding vectorwmax that satisÞes the following
equation:

gl (wmax ) = max(gl (w))

= max
�
|w · x r Š w · x l |

�
. (8)

Since gray-level image conversion in (6) is a kind of di-
mension reduction, (8) can be solved by Þnding a dimension
reduction vector that results in different converted values for
the road and lane classes. To obtain the dimension reduction
vectorwmax of an image from (8), we should knowxr andx l

of the image, which are deÞned by training data. Training data
consist of road and lane classes. To create training data for a
current image, we need to know the RGB values of the lanes
and roads in the image. However, since this is a preprocessing
step for the lane detection algorithm, the information is not
sufÞcient to extract the training data in the current frame. Thus,
training data for the current frame are extracted from several
previous frames. Details of the creation and updating processes
for training data are explained in Section III-B.

Training data for classc for the frame at timet are deÞned as
follows:

T t
c =

	
X t Šk

c , X t Š(kŠ1)
c , X t Š(kŠ2)

c , . . . , X t Š1
c



(9)

whereTt
c is training data of classc for the frame at timet, c

is either the lane or the road,X t
c denotes training data for class

c extracted from the frame at timet, andk is the number of
previous frames to be used as training data for a current frame.

The problem in (8) becomes identiÞcation of the dimension
reduction vector that maximizes discriminance between differ-
ent classes and that can be solved by the LDA approach, which
is a method frequently used in statistics, pattern recognition,
and machine learning to Þnd a linear combination of features
that characterize or separate two or more classes of objects
or events. LDA uses two different variances to Þnd the linear
combination between-class-scatterSB and within-class-scatter
SW . Each term is deÞned as follows:

SB =
c�

i =1

ni (m i Š m)(m i Š m)T (10)

SW =
c�

i =1

�

x � Ci

(x Š m i )(x Š m i )T (11)

wherex is data,ni is the number of data in classi , m i is the
mean of classi , m is the mean of all data,c is the number of
classes, andCi is a set of all data in classi .

To distinguish different classes, the between-class-scatter of
wx should be maximized, and the within-class-scatter should
be minimized. Thus

w = arg max
|w T SB w|
|w T SW w|

. (12)

Lane class is divided into a yellow-lane class and a white-
lane class, since lanes are generally marked with white or

Fig. 5. Lane-gradient-enhanced image of Fig. 1. (a) White-lane gradient.
(b) Yellow-lane gradient.

yellow. To maximize gradient enhancement, we identify two
conversion vectors: one to enhance white-lane gradients and
the other to enhance yellow-lane gradients. Thus, the two-
class LDA method is used, and two converted images are
generated from one color image. Fig. 5 shows an example
of gradient-enhanced converted images. Fig. 5(a) is a white-
lane-gradient-enhanced image, and Fig. 5(b) is a yellow-lane-
gradient-enhanced image. In both images, yellow and white
lanes are more noticeable than in the other methods shown in
Figs. 2 and 4. Both white- and yellow-lane gradients are greater
than those of the other methods, as shown in Table I.

B. Lane Detection Algorithm

Based on the gradient-enhancing conversion method de-
scribed in the previous section, we implement an illumination-
robust lane detection algorithm. The proposed algorithm starts
from an image conversion based on the gradient-enhancing
vector. Edge detection is then performed as a feature extraction
method. The Hough transform (HT) and edge linking method
are used for initial lane estimation. Final lane detection results
are produced by Þtting the lane model. Training data are
updated to adapt illumination changes. In the update step, we
extract new training data for the next frame. The overall process
of the algorithm is shown in Fig. 6. Details of each step are
represented as follows.

Edge detection preserves important structural properties and
signiÞcantly reduces the amount of data. Among the edge
detection algorithms, we use the Canny edge detector with
adaptive threshold values. The Canny edge detector uses two
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Fig. 16. Yellow-lane gradients in converted images consecutive sequences in Fig. 15(a)Ð(d).

derived from the curve parameters since the lane model is
differentiable and continuous. Thus

y =
�

1
2 c0x2 + mx + b, x < x 0

m�x + b�, x � x0
(18)

m� =
d

dx

�
1
2

c0x2 + mx + b
�

|x = x 0 , b� = bŠ
1
2

c0x2
0. (19)

Three parameters of the quadratic curve are needed to esti-
mate the lane model. The least squares method is used to Þnd
the parameters of a quadratic curve. Thus

SSD(c0, m, b) =
�

x>x 0

�
yi Š

�
1
2

c0x2 + mx + b
�� 2

. (20)

Training data for the next frame are updated based on lane
detection results in the current frame. First, we select the
interesting regions near the detected lanes. The new training
data of classc, i.e.,X t Š1

c , are collected based on the statistical
characteristics of the training data for the frame att Š 1,
i.e., T t Š1

c . The Mahalanobis distance is used to measure the
similarity betweenTt Š1

c and the frame at timet Š 1. Thus

MD c(x) =
�

(x Š m c)T SŠ1
c (x Š m c) (21)

wherex is an RGB vector of a pixel in the frame att Š 1, m c

is a mean vector of classc, Sc is a covariance matrix of class
c, andMD c is the Mahalanobis distance betweenx andm c.
If MD c(x) is less than a certain value,x is chosen as the new
training data of classc.

For the initial frame of an image sequence, we manually
crop patches of lane and road regions and use them as initial
training data. Training data for other frames are then updated
for adapting illumination changes.

IV. EXPERIMENTAL RESULT

A. Database Construction

The video database in various environmental conditions is
needed to evaluate vision-based ADAS. Since the performance
of a vision-based algorithm varies according to illumination
changes, we consider illumination conditions for constructing
the video database. Illumination changes in road environments
may include natural and artiÞcial light changes. Natural light
changes are caused by time and weather, and artiÞcial light
changes are caused by the characteristics of streetlamps and
vehicle lamps. The road type is another important factor in
developing ADAS. Fast vehicles, straight roads, and clear






